ME601

Kinematics and Dynamics of Machine Systems

Machines and Mechanisms

- A useful working definition of a mechanism is A system of elements arranged to transmit motion in a predetermined fashion.
- On the other hand, a machine is A system of elements arranged to transmit motion and energy in a predetermined fashion.

Inverse Dynamics Analysis

- It is a hybrid between Kinematics and Dynamics
- Basically, one wants to find the set of forces that lead to a certain desirable motion of the mechanism
- Your bread and butter in Controls...

Windshield wiper mechanism

Geometric Vectors

- What is a Geometric Vector?
- A quantity that has two attributes:
- A direction
- A magnitude
- VERY IMPORTANT:
- Geometric vectors are quantities that exist independently of any reference frame
- ME451 deals almost entirely with planar kinematics and dynamics
- We assume that all the vectors are defined in the 2D plane

Geometric Vectors: Operations

- What can you do with geometric vectors?
- Scale them
- Add them (according to the parallelogram rule)
- Addition is commutative
- Multiply two of them
- Inner product (leads to a number)
- Outer product (leads to a vector, perpendicular on the plane)
- Measure the angle θ between two of them

Unit Coordinate Vectors (short excursion)

- Unit Coordinate Vectors: a set of unit vectors used to express all other vectors
- In this class, to simplify our life, we use a set of two orthogonal unit vectors
- A vector a can then be resolved into components a_{x} and a_{y}, along the axes x and y

$$
\mathbf{a}=a_{x} \overrightarrow{\mathbf{i}}+a_{y} \overrightarrow{\mathbf{j}}
$$

- Nomenclature: a_{x} and a_{y} are called the Cartesian components of the vector
- Notation convention: throughout this class, vectors/matrices are in bold font, scalars are not (most often they are in italics)

Geometric Vectors: Operations

- Dot product of two vectors

$$
\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=a b \cos \theta(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}})
$$

- Regarding the angle between two vectors, note that

$$
\theta(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}) \neq \theta(\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{a}}) \quad \theta(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}})=2 \pi-\theta(\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{a}})
$$

- The dot-product of two vectors is commutative
- Since the angle between coordinate unit vectors is $\pi / 2$:

$$
\overrightarrow{\mathbf{i}} \cdot \overrightarrow{\mathbf{i}}=\overrightarrow{\mathbf{j}} \cdot \overrightarrow{\mathbf{j}}=1 \quad \overrightarrow{\mathbf{i}} \cdot \overrightarrow{\mathbf{j}}=\overrightarrow{\mathbf{j}} \cdot \overrightarrow{\mathbf{i}}=0
$$

Derivatives and the shapes of graphs

Increasing / Decreasing Test:
(a) If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval.
(b) If $f^{\prime}(\mathrm{x})<0$ on an interval, then f is decreasing on that interval.

Example: Find where the function $f(\mathrm{x})=\mathrm{x}^{3}-1.5 \mathrm{x}^{2}-6 \mathrm{x}+5$ is increasing and where it is decreasing.
Solution: $f^{\prime}(x)=3 x^{2}-3 x-6=3(x+1)(x-2)$
$f^{\prime}(\mathrm{x})>0$ for $\mathrm{x}<-1$ and $\mathrm{x}>2$;
thus the function is increasing on $(-\infty,-1)$ and $(2, \infty)$.
$f^{\prime}(x)<0$ for $-1<x<2$;
thus the function is decreasing on $(-1,2)$.

The First Derivative Test: Suppose that c is a critical number of a continuous function f.
(a) If f ' is changing from positive to negative at c, then f has a local maximum at c.
(b) If f^{\prime} is changing from negative to positive at c, then f has a local minimum at c.
(c) If f^{\prime} does not change sign at c, then f has no local maximum or minimum at c.

Example(cont.): Find the local minimum and maximum values of the function $f(x)=x^{3}-1.5 x^{2}-6 x+5$.
Solution: $f^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}-3 \mathrm{x}-6=3(\mathrm{x}+1)(\mathrm{x}-2)$
f^{\prime} is changing from positive to negative at -1 ; so $f(-1)=8.5$ is a local maximum value ;
f^{\prime} is changing from negative to positive at 2 ; so $f(2)=-5$ is a local minimum value.

Concave upward and downward

Definition:
(a) If the graph of f lies above all of its tangents on an interval, then f is called concave upward on that interval.
(b) If the graph of f lies below all of its tangents on an interval, then f is called concave downward on that interval.

Concave upward

Concave downward

Inflection Points

Definition:

A point P on a curve $y=f(x)$ is called an inflection point if f is continuous there and the curve changes

- from concave upward to concave downward or
- from concave downward to concave upward at P.

What does $f^{\prime \prime}$ say about f ?

Concavity test:

(a) If $f^{\prime \prime}(x)>0$ for all x of an interval, then the graph of f is concave upward on the interval.
(b) If $f^{\prime \prime}(x)<0$ for all x of an interval, then the graph of f is concave downward on the interval.

Example(cont.): Find the intervals of concavity of the function $f(x)=x^{3}-1.5 x^{2}-6 x+5$.
Solution: $f^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}-3 \mathrm{x}-6 \quad f^{\prime \prime}(\mathrm{x})=6 \mathrm{x}-3$
$f^{\prime}(\mathrm{x})>0$ for $\mathrm{x}>0.5$, thus it is concave upward on $(0.5, \infty)$.
$f^{\prime \prime}(\mathrm{x})<0$ for $\mathrm{x}<0.5$, thus it is concave downward on $(-\infty, 0.5)$.
Thus, the graph has an inflection point at $x=0.5$.

extrema

The second derivative test: Suppose f is continuous near c.
(a) If $f^{\prime}(\mathrm{c})=0$ and $f^{\prime \prime}(\mathrm{c})>0$ then f has a local minimum at c.
(b) If $f^{\prime}(\mathrm{c})=0$ and $f^{\prime \prime}(\mathrm{c})<0$ then f has a local maximum at c.

Example(cont.): Find the local extrema of the function $f(x)=x^{3}-1.5 x^{2}-6 x+5$.
Solution: $f^{\prime}(x)=3 x^{2}-3 x-6=3(x+1)(x-2)$,

$$
\text { so } f^{\prime}(x)=0 \text { at } x=-1 \text { and } x=2
$$

$$
\begin{aligned}
& f^{\prime \prime}(x)=6 x-3 \\
& f^{\prime \prime}(-1)=6^{*}(-1)-3=-9<0 \text {, so } x=-1 \text { is a local maximum } \\
& f^{\prime^{\prime}}(2)=6^{*} 2-3=9>0 \text {, so } x=2 \text { is a local minimum }
\end{aligned}
$$

Summary of what y^{\prime} and $y^{\prime \prime}$ say about the curve

First derivative:
y^{\prime} is positive \longrightarrow Curve is rising.
y^{\prime} is negative \longrightarrow Curve is falling.
y^{\prime} is zero
$\Longrightarrow \frac{\text { Possible local maximum or }}{\text { minimum }}$

Second derivative:
$y^{\prime \prime}$ is positive \longrightarrow Curve is concave up.

$y^{\prime \prime}$ is negative \longrightarrow Curve is concave down.

$y^{\prime \prime}$ is zero
\longrightarrow Possible inflection point (where concavity changes).

Example(cont.): Sketch the curve of $f(x)=x^{3}-1.5 x^{2}-6 x+5$.
From previous slides,
$f^{\prime}(\mathrm{x})>0$ for $\mathrm{x}<-1$ and $\mathrm{x}>2$; thus the curve is increasing on $(-\infty,-1)$ and $(2, \infty)$.
$f^{\prime}(\mathrm{x})<0$ for $-1<\mathrm{x}<2$; thus the curve is decreasing on $(-1,2)$. $f^{\prime \prime}(\mathrm{x})>0$ for $\mathrm{x}>0.5$; thus the curve is concave upward on $(0.5, \infty)$. $f^{\prime \prime}(\mathrm{x})<0$ for $\mathrm{x}<0.5$; thus the curve is concave downward on $(-\infty$, 0.5)
$(-1,8.5)$ is a local maximum; $(2,-5)$ is a local minimum.
$(0.5,1.75)$ is an inflection point

Curve Sketching

Guidelines for sketching a curve:

A. Domain

Determine D, the set of values of \mathbf{x} for which $f(\mathrm{x})$ is defined

B. Intercepts

- The y-intercept is $f(0)$
- To find the x-intercept, set $y=0$ and solve for x

C. Symmetry

- If $f(-\mathrm{x})=f(\mathrm{x})$ for all x in D , then f is an even function and the curve is symmetric about the y-axis
- If $f(-\mathrm{x})=-f(\mathrm{x})$ for all x in D , then f is an odd function and the curve is symmetric about the origin
D. Asymptotes
- Horizontal asymptotes
- Vertical asymptotes

Guidelines for sketching a curve (cont.):

E. Intervals of Increase or Decrease

- $\quad f$ is increasing where $f^{\prime}(x)>0$
$-\quad f$ is decreasing where $f^{\prime}(x)<0$

F. Local Maximum and Minimum Values

- Find the critical numbers of $f\left(f^{\prime}(\mathrm{c})=0\right.$ or $f^{\prime}(\mathrm{c})$ doesn't exist)
- If f^{\prime} is changing from positive to negative at a critical number c, then $f(c)$ is a local maximum
- If f^{\prime} is changing from negative to positive at a critical number c, then $f(c)$ is a local minimum

G. Concavity and Inflection Points

$-\quad f$ is concave upward where $f^{\prime \prime}(x)>0$
$-\quad f$ is concave downward where $f^{\prime \prime}(x)<0$

- Inflection points occur where the direction of concavity changes
H. Sketch the Curve

